2023金属年鉴-稀土篇

行业评级:看好

2023年12月25日

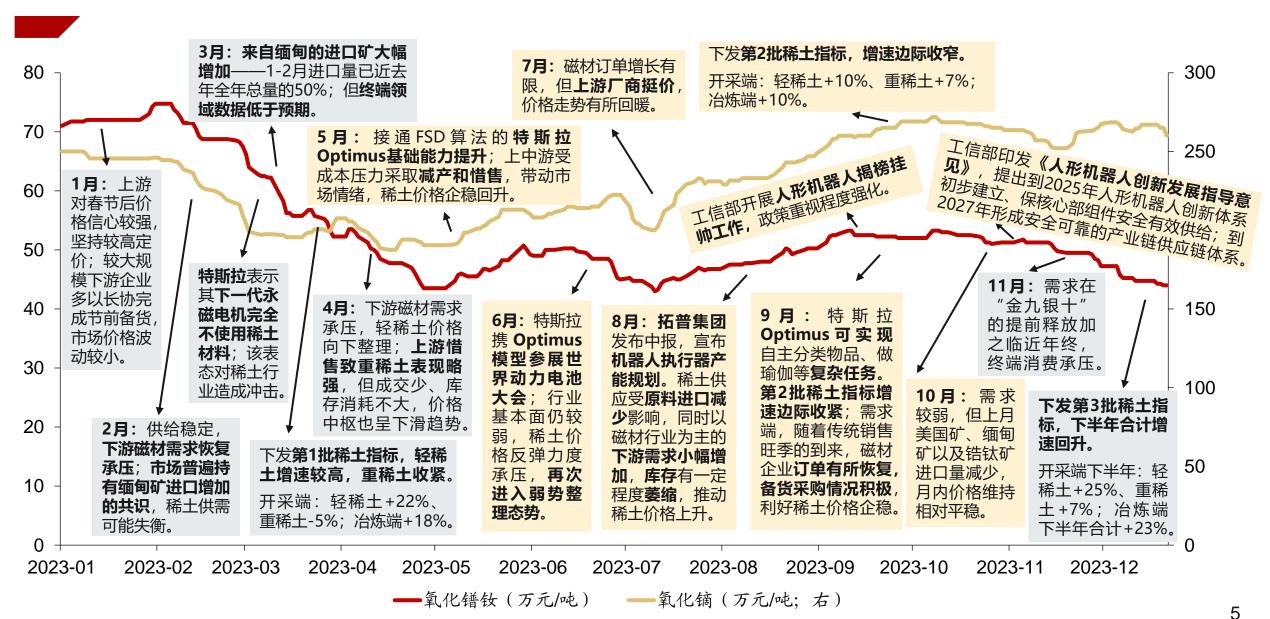
1、2023年稀土价格复盘: 承压的一年, 但也是看到增量机会的一年

- 指标放量+进口高增+需求承压,导致稀土供需错配;
- · 但**人形机器人进步迅速**,或打开未来行业空间。

2、稀土成本分析

- 开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或侧面反映矿端整体成本变化不大;
- 冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土价格上行时有望增厚其利润。

3、稀土及磁材基本面梳理


- 稀土是中国的优势产业。中国稀土储量全球占比34%,稀土矿产量占比70%,稀土冶炼分离产量占比94%;
- 我国严格实行配额制,指标增量主要来自轻稀土;
- 永磁材料已成为稀土的最大下游应用,需求占比高达42%; 烧结钕铁硼占据主流。

4、氧化镨钕供需平衡表

- · 氧化镨钕供给: 预计2025年全球产量13万吨,同比+9%;增量主要来自国内指标,海外供给仍存刚性。
- 氧化镨钕需求:下游多点开花,预计2024年再现供需缺口-556吨;
- ・ 供需缺口预计在2025年进一步扩大至-3505吨。
- 5、风险提示:终端需求增长不及预期;稀土指标增长超预期;预测和计算偏差的风险。

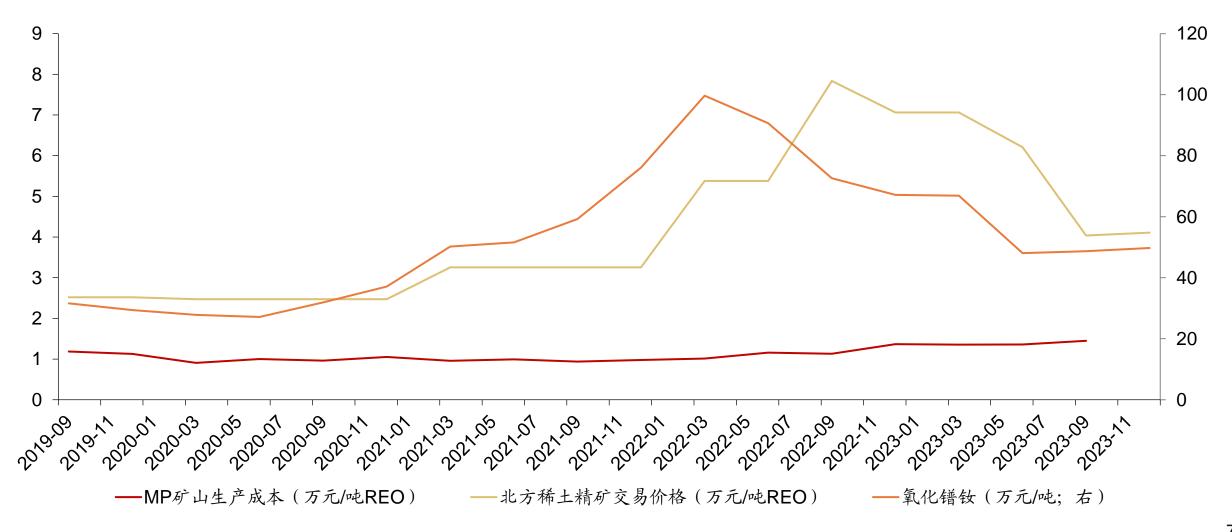
- 指标放量+进口高增+需求承压,导致稀土供需错配;
- 但人形机器人进步迅速,或打开未来行业空间。
- **1** 稀土成本分析
 - 开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或 侧面反映矿端整体成本变化不大;
 - · 冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土 价格上行时有望增厚其利润。
- **3** 稀土及磁材基本面梳理
 - 稀土是中国的优势产业;
 - 永磁材料是重要的稀土下游。
- 04 氧化镨钕供需平衡表
 - 氧化镨钕供给:预计2025年全球产量13万吨,同比+9%;
 - 氧化镨钕需求:下游多点开花,预计2025年供需缺口-3505吨。

- 指标放量+进口高增+需求承压,导致稀土供需错配;
- 但人形机器人进步迅速,或打开未来行业空间。

02 稀土成本分析

- 开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或 侧面反映矿端整体成本变化不大;
- 冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土价格上行时有望增厚其利润。

1 稀土及磁材基本面梳理


- 稀土是中国的优势产业;
- 永磁材料是重要的稀土下游。

04 氧化镨钕供需平衡表

- 氧化镨钕供给:预计2025年全球产量13万吨,同比+9%;
- 氧化镨钕需求:下游多点开花,预计2025年供需缺口-3505吨。

开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或侧面反映矿端整体成本变化不大;

冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土价格上行时有望增厚其利润

- 指标放量+进口高增+需求承压,导致稀土供需错配;
- 但人形机器人进步迅速,或打开未来行业空间。

7 稀土成本分析

- 开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或 侧面反映矿端整体成本变化不大;
- 冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土价格上行时有望增厚其利润。

3 稀土及磁材基本面梳理

- 稀土是中国的优势产业;
- 永磁材料是重要的稀土下游。

04 氧化镨钕供需平衡表

- 氧化镨钕供给:预计2025年全球产量13万吨,同比+9%;
- 氧化镨钕需求:下游多点开花,预计2025年供需缺口-3505吨。

轻稀土7种,重稀土10种

- ▶ 轻稀土7种元素:镧、铈、镨、钕、钷、钐、铕;
- ▶ 重稀土10种元素: 钆、铽、镝、钬、铒、铥、镱、镥、钪、钇;
- ▶稀土元素可与其他材料形成性能各异、品种繁多的新功能材料,提高产品性能,因此被称为"现代工业维生素"。

图:稀土元素概览

1	1 1 H	2											13	14	15	16	17	18 Pe
4.0000	3 1:	4 D.											5 D	6	7 NI	8	9 F	10 N.
2	<u>ы</u> 11	Be 12											B 13	14	N 15	16	17	Ne 18
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	Т	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Ln	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
7	87 Fr	88 Ra	Ac															
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	

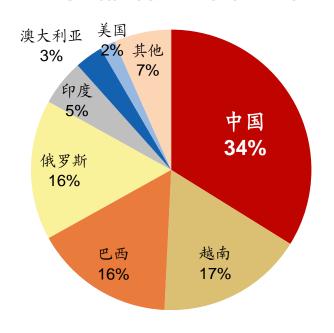
资料来源: 叮百科, 浙商证券研究所

稀土磁材是典型的稀土中游深加工产品

- ▶ 上游开采稀土原矿,产品为稀土精矿、碳酸稀土、氯化稀土等。
- ▶ 中游涉及冶炼分离和稀土矿深加工环节,产品为稀土氧化物、稀土金属等,深加工产品为永磁材料、催化剂、抛光材料、冶金材料等。
- ▶ 下游应用主要包括永磁电机、新能源车、半导体芯片、节能灯、特种光源等,涵盖汽车、工业、冶金、陶瓷、军工、石油化工、新材料、农业等 诸多终端领域。

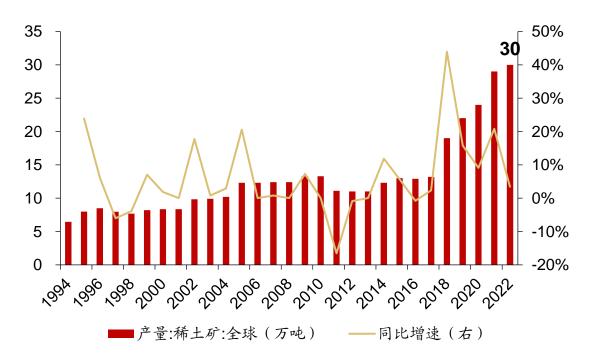
图:稀土行业产业链概览

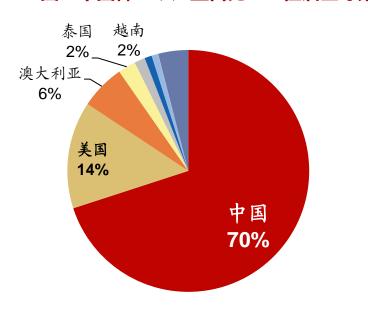
资料来源:行行查《2022年中国稀土行业研究报告》,浙商证券研究所


因此稀土产业是中国的优势产业

- ▶稀土矿储量:前5国家占比超88%,中国第1,呈高度集中态势。
- ▶ 2022年,全球稀土矿储量1.3亿吨,同比+8.3%。其中:中国4400万吨、越南2200万吨、俄罗斯&巴西2100万吨、印度690万吨。

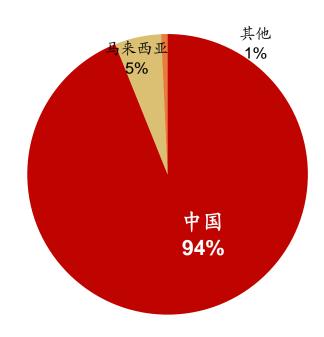
图:截至2022年全球稀土储量1.3亿吨


图:中国储量占比34%位居全球第一(2022年)


因此稀土产业是中国的优势产业

- ▶稀土矿产量:前5国家占比超94%,中国70%,同样呈高度集中态势。
- ▶ **2022年,全球稀土矿产量30万吨,同比+3.45%。**其中,中国21万吨,居世界第一;美国4.3万吨,位居世界第二。

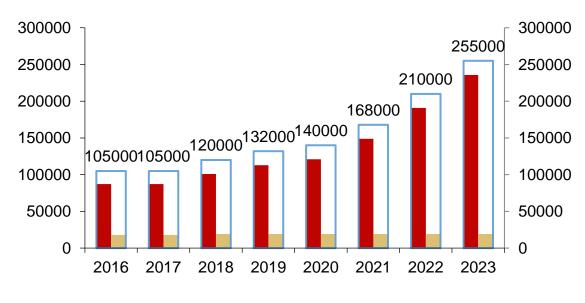
图: 2022年全球稀土矿产量30万吨 (同比+3.45%)


图:中国稀土矿产量占比70%位居全球第一

因此稀土产业是中国的优势产业

- ▶ 2022年,全球稀土冶炼分离产品主要来自中国和澳大利亚Lynas公司的马来西亚工厂。
- ▶ 其中, 中国冶炼分离产品的产量占比94%, 居世界首位。

图:中国稀土冶炼分离产量占比94%,位居全球第一


供给存在相对刚性,保证资源合理开发

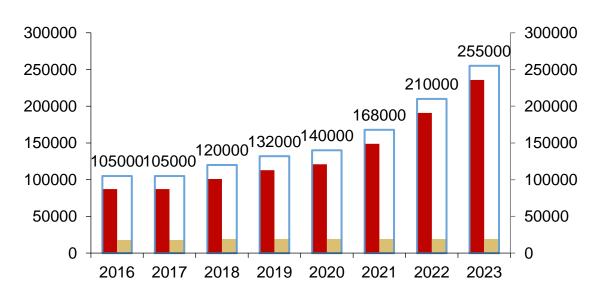
▶ 2006年开始,我国对稀土行业实行开采总量控制指标管理制度。在此制度下,我国可结合市场需求对稀土供给做出有效调控,对行业定价机制的构建、稀土资源的安全合理开发具有重要意义。

▶ 开采指标: 2023年25.5万吨, 同比+21%, 2016-2023年CAGR为14%。

▶ 冶炼分离: 2023年24.4万吨, 同比+21%, 2016-2023年CAGR为14%。

图: 2023年我国稀土开采总量指标25.5万吨 (同比+21%)

■岩矿型稀土(轻; 吨REO) ■离子型稀土(中重为主; 吨REO) □合计


图: 2023年我国稀土冶炼分离指标24.4万吨 (同比+21%)

重稀土开采指标几乎无增量

- ▶ 轻稀土矿开采指标: 2023年23.6万吨, 同比+24%; 2016-2023年CAGR为14%。
- ▶ 中重稀土矿开采指标: 2023年1.9万吨, 同比持平; 2016-2023年CAGR仅为1%。
- ▶ 主要原因在于:此前稀土行业非法开采导致中重稀土储量下降明显,国家对其进行了针对性的开采保护,体现了我国稀土指标管理制度的调控优越性。

图: 2023年我国稀土开采总量指标25.5万吨 (同比+21%)

■岩矿型稀土(轻; 吨REO) ■离子型稀土(中重为主; 吨REO) □合计

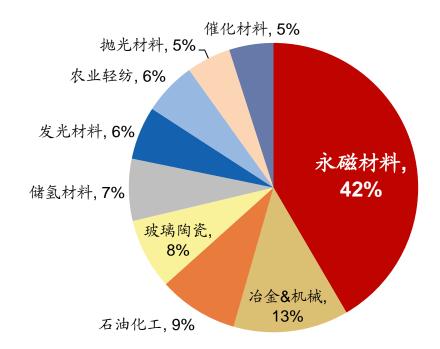
图: 2023年我国稀土冶炼分离指标24.4万吨 (同比+21%)

工业维生素

- ▶稀土被誉为"工业维生素",具有优异的磁、光、电性能,可显著改善相关产品的性能。
- ▶目前,永磁、发光、储氢、催化等稀土功能材料已广泛应用于先进装备制造业、新能源产业、电子、石油化工、治金、机械、轻工、环境保护、农业等诸多领域。

表: 典型稀土品种的应用领域

典型稀土品种	主要应用领域
镨	石油催化裂化、钐钴永磁&钕铁硼永磁的添加剂、金属材料净化变质剂、化工催化剂、农用稀土、研磨抛光材料。
钕	钕铁硼永磁。此外,钕还应用于有色金属材料,在镁或铝合金中添加1.5%-2.5%的钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。
镝	钕铁硼永磁添加剂(2%-3%);炼油、化工业催化剂;荧光粉激活剂;镝灯。
铽	X射线增感剂;计算机打印头;光磁盘;磁光贮存材料。


16

永磁材料占据稀土的主要需求

▶ 从应用结构来看:

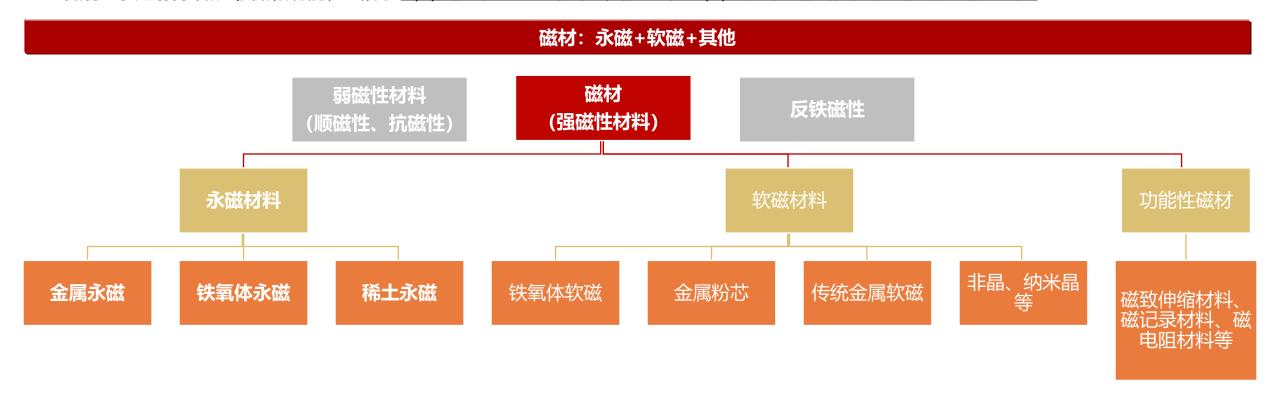
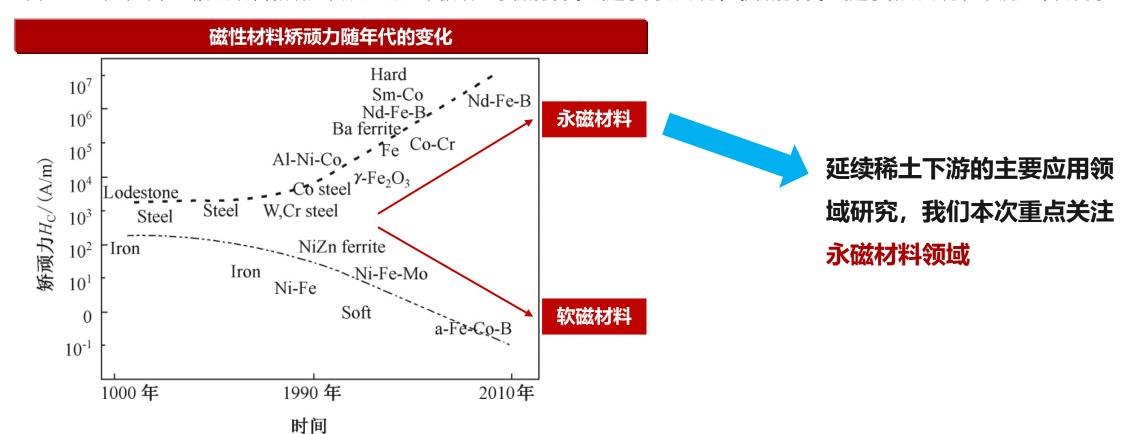

- 1) 永磁材料已成为稀土的最大下游应用,需求占比高达42%,主要受新能源汽车、风电、机器人、变频空调等领域的催化;
- 2) 冶金&机械、石油化工分别以13%、9%的需求占比位列第二、第三。

图:稀土下游应用结构,永磁材料占比最高

永磁是重要分类


- 磁材在狭义上特指强磁性材料。磁性材料可以对磁场作出某种方式的反应,按性质可分为顺磁性、抗磁性、反铁磁性、铁磁性以及亚铁磁性;其中,铁磁性和亚铁磁性对外磁场反应较强,被称为强磁性材料,也即狭义上的磁材。
- ▶ **磁材主要包括永磁、软磁**和功能性磁材。<u>(1)永磁:一经磁化,不易退磁。(2)软磁:易磁化,但磁化后也易退磁。</u>

永磁不断追求高矫顽力

- ▶ 矫顽力: 使已磁化磁材无法向外磁路提供能量(但磁体内部仍具有一定能量)而必须施加的、与原磁化方向相反的外磁场强度;单位为Oe或A/m。
- > 矫顽力越高, 磁材越不容易退磁。

自20世纪初以来,磁材的制备和研究发展走向两个极端:永磁材料不断追求高矫顽力,软磁材料不断追求低矫顽力,以满足不同需求。

资料来源: 《新型磁性材料的研究进展》 (邹芹等, 2021) , 浙商证券研究所

烧结钕铁硼占据稀土永磁的主流

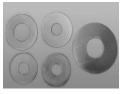
【1】金属永磁:初代永磁合金

概述

初代永磁合金,泛指金属Fe基和Co基(不包括稀土金属)的合金永磁体。

主要细分种类

铝镍 钴系 1931年,由日本冶金学家三岛德七发明。剩磁高、耐高温,但矫顽力低、加工困难,**常用于军工仪表等高可靠性要求领域。**

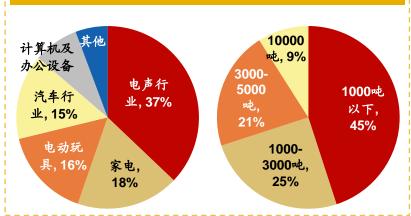

铁铬 钴系 上世纪70年代初问世,属于时效硬化型的可变 形永磁,可进行机加工、冲压等操作,**常用于 制造形状复杂的小巧磁性元件。**

铂钴

以等原子组成的铂钴合金制成的有序硬化型可变形永磁体,具有耐氢、抗腐蚀等性质,**常用于航天、航海、军事等领域的器件制造。**

依次 示例

【2】铁氧体永磁:性价比高、产能分散


概述

1933年,由加藤与五郎、武井武共同发明,以 Fe_2O_3 为主要原料,被誉为**第二代永磁体。**

主要细分种类及特点

- (1) 按主要成分分类: 钡铁氧体和锶铁氧体。
- (2) **特点**: 尽管性能并非最优,但原料丰富、制备工艺简单、价格低廉,有望与钕铁硼磁材长期共存。
- (3) **关注点**: 高性能铁氧体磁瓦可用于制造汽车的微特电机、变频家电电机。

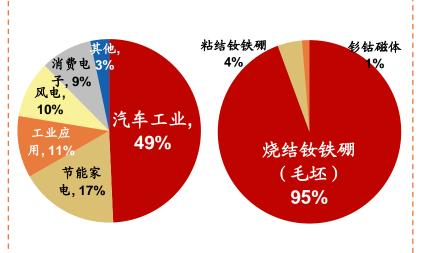
62%用于制造电机,终端应用广泛,但国内产能分散

【3】稀土永磁: 烧结钕铁硼占主流

概这

混合稀土金属元素和过渡金属元素形成的永磁 材料,自1967年起**已有三代产品量产应用**。

产品


1. 钐钴 (SmCo₅)

2. 钐钴Sm₂Co₁₇

4. 铁氮(在研

3. 钕铁矾

汽车需求旺盛,钕铁硼产量占比极高

剩磁强度大、内禀矫顽力高、最大磁能积高

> 衡量永磁材料性能的关键指标:

- 刺磁感应强度,指永磁经磁化至技术饱和、 去掉外磁场后,保留的表面场;数值越高, 越有利于提升电机效率。
- 内禀矫顽力,使永磁体完全无磁场能量储存 而必须施加的、与原磁化方向相反的外磁场 强度;数值越高,电机抗退磁能力越强。
- ▶ 最大磁能积:永磁体向外磁路提供磁场能量的最大值;数值越高,产生单位磁场强度所需的永磁体积越小,利于节省电机空间。
- 横向对比各类永磁材料,钕铁硼具有显著的指标优势,有望凭借优异性能持续拓展市场,进而市场迎来快速发展。

	主要	永磁体性能对比	2: 钕铁硼占优	
	金属永磁-铝镍钴	铁氧体永磁	稀土永磁-钐钴永磁	稀土永磁-烧结钕铁硼
剩磁强度 (T)	0.58~1.35	0.32~0.43	0.8~1.2	1.17~1.48
内禀矫顽力 (kOe)	0.38~1.53	1.76~4.21	15~21	11~40
最大磁能积 (MGOe)	1.4~13.2	0.17~5.2	24~33	33~50
居里温度 (°C)	890	450	740~926	310
工作温度 (°C)	-250~550	-40~250	-250~525	-125~220
主要应用领域	仪表、电能表	大体积扬声器、 电动工具、玩具、 风扇电机等	军事及航空航天领域	各类永磁电机、汽车EPS、 VCM、 MRI等
优点	温度稳定性、时 间稳定性、耐腐 蚀性高	资源丰富,价格 低廉	工作温度高、耐腐蚀 性好,磁性能优于铝 镍钴和铁氧体	关键指标领先,机械力学性 能好,可切削和钻孔
缺点	含有战略元素钴,性价比较低	磁性能较差、温度稳定性差	含有战略元素钴,性价比低	居里温度低、温度稳定性差 但可以通过添加镝来改善

单位磁场强度下,钕铁硼的相对体积最小,利于节省电机空间

性能优秀+政策支持

- ▶ **高性能钕铁硼永磁**:内禀矫顽力 (kOe) 和最大磁能积 (MGOe) 之和大于60的烧结钕铁硼永磁。
- ▶ 凭借显著优异的性能,叠加"双碳"目标和"机器替人"大趋势下**新能源汽车、风电、节能家电、机器人等领域对永磁电机的旺盛需求和效率要** 求,高性能钕铁硼永磁逐渐脱颖而出,近年来持续获得国家的政策支持,迎来发展的快车道。

	以钕铁硼为代表的高性能稀土永磁持续获得国家政策支持										
发布时间	文件名称	发布部门	相关内容								
2016年12月	《新材料产业发展指南》	工信部、发改委、 科技部、财政部	将 高性能永磁材料 列入"关键战略材料",大力发展稀土永磁节能电机及配套稀土永磁材料。								
2019年9月	《关于促进制造业产品和服务质量提 升的实施意见》	工信部	加快稀土功能材料创新中心和行业测试评价中心建设,支持开发稀土绿色开采和 冶炼分离技术,加快 稀土新材料及高端应用产业发展 。								
2021年3月	《"十四五"规划和 2035 年远景目标 纲要》	发改委	推动 高端稀土功能材料等 高端新材料取得突破。								
2021年10月	《电机能效提升计划 (2021-2023年) 》	工信部、市监局	加快高效节能电机关键配套材料创新升级(含稀土永磁);加快突破 永磁电机效率最优控制技术 ;针对使用变速箱、耦合器的传动系统, 鼓励采用低速直驱和高速直驱式永磁电机 。2023年,高效节能电机年产量达1.7亿干瓦。								
2021年12月	《原材料工业发展规划》	工信部、科技部、 自然资源部	重点突破高性能稀土磁性 等一批关键材料,建立健全 新能源汽车驱动电机用稀土 永磁材料等上下游合作机制 ,推进高性能稀土永磁材料选区精准渗透等技术。								
2021年12月	《重点新材料首批次应用示范指导目 录(2021年版)》	工信部	再次将高性能钕铁硼等稀土功能材料列入新材料重点领域中的"关键战略材料"。								

22

- 指标放量+进口高增+需求承压,导致稀土供需错配;
- 但人形机器人进步迅速,或打开未来行业空间。
- 7 稀土成本分析
 - 开采端:以美国MP矿为例,19Q3~23Q3成本季度复合增速仅约1%,或 侧面反映矿端整体成本变化不大;
 - 冶炼端:以北稀为例,其稀土精矿交易成本滞后于稀土价格变动,当稀土价格上行时有望增厚其利润。
- **3** 稀土及磁材基本面梳理
 - 稀土是中国的优势产业;
 - 永磁材料是重要的稀土下游。
- 1 氧化镨钕供需平衡表
 - 氧化镨钕供给:预计2025年全球产量13万吨,同比+9%;
 - 氧化镨钕需求:下游多点开花,预计2025年供需缺口-3505吨。

增量主要来自国内指标,海外供给仍存刚性

单位: 吨REO	2020	0	202	21	20)22	202	23E	202	24E	202	25E
我国稀土冶炼分离指标	135000		162000		202000)	243850)	282866	;	328125	;
北稀集团岩矿型稀土	6	3784		89634		128934		163234		189351		219648
其他岩矿型稀土	3	39050		40200		46265		53819		62431		72419
离子型稀土	3	32166		32166		26801		26797		31084		36057
白云鄂博镨钕配分	20%		20%		20%		20%		20%		20%	
其他岩矿型镨钕配分	14%		14%		14%		14%		14%		14%	
离子型矿镨钕配分	26%		26%		26%		26%		26%		26%	
我国矿端氧化镨钕供给	26755		32091		39431		47380		54961		63755	
镨钕元素综合配分	20%		20%		20%		19%		19%		19%	
我国回收端氧化镨钕供给	20000		23000		28554		31409		32979		34628	
中国稀土矿&回收氧化镨钕供给	46755		55091		67985		78789		87940		98383	
YOY	13%		18%		23%		16%		12%		12%	
独居石氧化镨钕供给-中国冶炼	5750		6440		7130		7636		8142		8648	
美国Mountain Pass-多在中国冶炼	6122		6744		6757		6848		6848		6848	
缅甸矿-多在中国冶炼	7037		7945		2724		13483		10215		8626	
澳洲Lynas-在马来西亚冶炼	4853		5396		5819		6820		6900		7000	
其他供给(含Hastings)	430		430		430		500		500		1869	
非中国稀土矿氧化镨钕供给	18442		20515		15730		27651		24463		24343	
全球氧化镨钕供给	70947		82045		90845		114076)	120545		131373	}
YOY	12%		16%		11%		26%		6%		9%	

供需缺口预计在2025年进一步扩大

单位: 吨REO	2020	2021	2022	2023E	2024E	2025E
新能源汽车	3977	8171	13346	18133	22695	27205
EPS	9109	9561	9577	10469	10944	11534
风电	6803	6859	5831	9182	10367	11591
变频空调	5751	7418	10742	11813	12993	14033
节能电梯	5329	6458	6113	6680	7121	7589
智能手机	2010	2107	1875	1804	1865	1928
工业机器人	7905	10531	12501	13376	14313	15315
人形机器人	-	-	-	-	240	473
其他	39005	35179	31846	37130	40564	45211
氧化镨钕合计需求量	79889	86283	91831	108588	121100	134878
供需缺口 (供给-需求)	-8942	-4237	-986	5487	-556	-3505

- 1、终端需求增长不及预期: 若终端需求的增长不及预期, 可能会导致稀土供大于求, 进而压制稀土价格。
- **2、稀土指标增长超预期**:若我国稀土开采、冶炼指标的增速超预期,可能会导致稀土供给大量释放,进而压制稀土价格的上涨。
- **3、预测和计算偏差的风险**:在梳理氧化镨钕的全球供需情况时,部分数据为根据历史文献、产能规划、元素比例、全球产能等因子进行推算而得出,且存在四舍五入的计算误差和不同数据库之间统计口径的差异,可能存在预测和计算偏差的风险。

行业的投资评级

以报告日后的6个月内,行业指数相对于沪深300指数的涨跌幅为标准,定义如下:

1、看好: 行业指数相对于沪深300指数表现+10%以上;

2、中性: 行业指数相对于沪深300指数表现-10%~+10%以上;

3、看淡 : 行业指数相对于沪深300指数表现 - 10%以下。

我们在此提醒您,不同证券研究机构采用不同的评级术语及评级标准。我们采用的是相对评级体系,表示投资的相对比重。

建议:投资者买入或者卖出证券的决定取决于个人的实际情况,比如当前的持仓结构以及其他需要考虑的因素。投资者不应 仅仅依靠投资评级来推断结论